Heat Expansion

ΔLL=αΔT,ΔVV=βΔT,β=3α\frac{\Delta L}{L} = \alpha \Delta T, \quad \frac{\Delta V}{V} = \beta \Delta T, \quad \beta =3\alpha

Heat

Q=mcΔT,ls=Qsm,la˚=Qa˚mQ = mc \Delta T, \quad l_s = \frac{Q_s}{m}, \quad l_\textup{å} = \frac{Q_\textup{å}}{m}

Fluid Pressure

ptot=pfluid+pair=ρgh+pairp_{tot} = p_\textup{fluid} + p_\textup{air} = \rho gh + p_\textup{air}

Ideal Gas Law

pV=NkTorpV=nRTwheren=mtotM=NNAandR=kNA\begin{gathered} pV = NkT \quad \textup{or} \quad pV = nRT \\ \textup{where} \quad n = \frac{m_{tot}}{M} = \frac{N}{N_A} \quad \textup{and} \quad R = kN_A \end{gathered}

Gas Density and Particle Density

ρ=mtotV=pMRT,no=NV=pkT\rho = \frac{m_{tot}}{V} = \frac{pM}{RT}, \quad n_o = \frac{N}{V} = \frac{p}{kT}

Barometric Height Formula

p=p0eρ0gh/p0,h=p0ρ0glnp0pp = p_0e^{-\rho_0gh/p_0}, \quad h = \frac{p_0}{\rho_0g}\ln{\frac{p_0}{p}}

Relative Moisture

RM=pwaterpsaturationR_{M} = \frac{p_\textup{water}}{p_\textup{saturation}}

Van der Waal's Equation

(p+an2V2)(Vnb)=nRT\left(p + a\frac{n^2}{V^2}\right)(V - nb) = nRT

Molecule Radius

r=(3b16πNA)1/3r = \left(\frac{3b}{16\pi N_A}\right)^{1/3}

Bernoullis Equation

p1+ρv122+ρgy1=p2+ρv222+ρgy2p_1 + \frac{\rho v_1^2}{2} + \rho gy_1 = p_2 + \frac{\rho v_2^2}{2} + \rho gy_2

Pressure (Microscopic)

p=23nomen2v2=23noWkinenp = \frac{2}{3}n_o\frac{m_\textup{en}}{2}\langle v^2 \rangle = \frac{2}{3}n_o\left\langle W_\textup{kin}\right\rangle_\textup{en}

Temperature (Microscopic)

Wkinen=32kT\left\langle W_\textup{kin} \right\rangle_\textup{en} = \frac{3}{2}kT

Inner Energy (change)

ΔU=f2NkΔT=f2nRΔT\Delta U = \frac{f}{2}Nk\Delta T = \frac{f}{2}nR\Delta T

First Theorem

Q=ΔU+WwithW=12pdVQ = \Delta U + W \quad \textup{with} \quad W = \int_1^2pdV

Isokor

W0W \equiv 0

Isobar

W=p(V2V1)W = p\left(V_2 - V_1\right)

Isotherm

W=nRTln(V2V1)W = nRT\ln\left(\frac{V_2}{V_1}\right)

Adiabat

W=ΔUW = -\Delta U

Molar Heat Capacity

cV=f2R,cp=cV+Rc_V = \frac{f}{2}R, \quad c_p = c_V + R

Adiabat(Poissons Equations)

T1V1(γ1)=T2V2(γ1)p1V1γ=p2V2γ\begin{gathered} T_1V_1^{(\gamma - 1)} = T_2V_2^{(\gamma - 1)} \\ p_1V_1^\gamma = p_2V_2^\gamma \end{gathered}

Quotient

γCpCV=cpcV=1+2f\gamma \equiv \frac{C_p}{C_V} = \frac{c_p}{c_V} = 1 + \frac{2}{f}

Circuit Process

Qnet=Wnet=pdVQ_\textup{net} = W_\textup{net} = \oint pdV

Efficiency

η=WnetQin=QinQoutQin=1QoutQin\eta = \frac{W_\textup{net}}{Q_\textup{in}} = \frac{Q_\textup{in} -|Q_\textup{out}|}{Q_\textup{in}}= 1 - \frac{|Q_\textup{out}|}{Q_\textup{in}}

Ideal Efficiency

η=TwarmTcoldTwarm=1TcoldTwarm\eta = \frac{T_\textup{warm} - T_\textup{cold}}{T_\textup{warm}} = 1 - \frac{T_\textup{cold}}{T_\textup{warm}}

Cold Factor (def. and Ideal)

KfQinWnet,Kf=TcoldTwarmTcoldK_f \equiv \frac{Q_\textup{in}}{|W_\textup{net}|}, \quad K_f = \frac{T_\textup{cold}}{T_\textup{warm} - T_\textup{cold}}

Heat Factor (def. and Ideal)

VfQoutWnet,Vf=TwarmTwarmTcoldV_f \equiv \frac{Q_\textup{out}}{|W_\textup{net}|}, \quad V_f = \frac{T_\textup{warm}}{T_\textup{warm} - T_\textup{cold}}

Gauss Distribution

f(vz)=men2πkTemenvz2/(2kT)f(v_z) = \sqrt{\frac{m_\textup{en}}{2\pi kT}}e^{-m_\textup{en}v_z^2/(2kT)}

Maxwell--Boltzmann Distribution

f(v)=4πv2(men2πkT)3/2emenv2/(2kT)f(v) = 4\pi v^2 \left(\frac{m_\textup{en}}{2\pi kT}\right)^{3/2}e^{-m_\textup{en}v^2/(2kT)}

Average energy

Wkin=menv22=men2v2=32kT\begin{gathered} %\langle v \rangle = \sqrt{\frac{8kT}{\pi m_\textup{en}}}, \quad \langle %v\rangle = 2\langle |v_x| \rangle \\ \langle W_\textup{kin} \rangle = \left\langle \frac{m_\textup{en}v^2}{2}\right\rangle = \frac{m_\textup{en}}{2}\langle v^2 \rangle = \frac{3}{2}kT \end{gathered}

Maxwell-Boltzmann velocities

vrms=v2=3kTmv_{rms} = \sqrt{ \langle v^2 \rangle } = \sqrt{ \frac{3kT}{m} }
vmax=2kTmv_{max} = \sqrt{ \frac{2kT}{m} }
v=0fMBvdv=8kTπm\langle v \rangle = \int^\infty_0 f_{MB}\cdot v \cdot dv = \sqrt{ \frac{8kT}{\pi m} }

Mean Free Path

l=1noπd22l = \frac{1}{n_o\pi d^2 \sqrt{2}}

Heat Conduction

P=kAdTdx,R=ΔxkAP = k \cdot A \cdot \left| \frac{\textup{d}T}{\textup{d}x} \right|, R = \frac{\Delta x}{kA}

Thermal resistance

ΔT=RthermP    if    Rtherm=ΔxkA\Delta T = R_{therm} \cdot P \;\; if \;\; R_{therm} = \frac{\Delta x}{kA}

Heat Transfer

P=αAΔT,  R=1αAP = \alpha \cdot A \cdot \left| \Delta T \right|, \; R=\frac{1}{\alpha A}

Stefan-Boltzmann's law

P=Aσ(T4T04),σ=5.67108W/m2K4P = A \sigma \left(T^4-T^4_0\right), \sigma = 5.67 \cdot 10^{-8} \textup{W}/\textup{m}^2 \textup{K}^4
Preal=εPidealP_{real} = \varepsilon \cdot P_{ideal}

Wien's law

λmaxT=2.898103Km\lambda_{max}\cdot T = 2.898 \cdot 10^{-3} \textup{K} \cdot \textup{m}

Planck's law

ρ(f)df=8πhf3c31ehf/kT1df\rho (f)df = \frac{8\pi hf^3}{c^3} \cdot \frac{1}{e^{hf/kT}-1} df

The solar constant

Average value1380  W/m2\textup{Average value} \approx 1380 \; W/m^2