Basic mechanics and electronics Electric flow

Momentary Speed

$$
v_{\text {medel }}=\frac{s}{t}, \quad v_{\text {momentant }}=\frac{d s}{d t}
$$

Momentary Acceleration

$$
\begin{aligned}
& a_{\text {medel }}=\frac{v}{t}=\frac{v^{2}-V_{0}^{2}}{2 s} \\
& a_{\text {momentan }}=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}
\end{aligned}
$$

Momentum

$$
\mathbf{p}=\mathbf{m} \cdot \mathbf{v}
$$

Force

$$
\mathbf{F}=\frac{d \mathbf{p}}{d t}=\frac{m \cdot d \mathbf{v}}{d t}=m \cdot \mathbf{a}
$$

Work

$$
W=\int_{s_{1}}^{s_{2}} \mathbf{F} \cdot \mathbf{d s}
$$

Kinetic energy

$$
W_{[k i n]}=\frac{m \cdot v^{2}}{2}
$$

Potential energy

$$
W_{p o t}=-\int_{A}^{B} \mathbf{F} \cdot \mathbf{d s}=\mathbf{W}_{\mathbf{p o t}}(\mathbf{B})-\mathbf{W}_{\mathbf{p o t}}(\mathbf{A})
$$

Effect

$$
\begin{gathered}
P_{\text {medel }}=\frac{W}{t} \\
P_{\text {momentan }}=\frac{d W}{d t}
\end{gathered}
$$

Coulumbs law

$$
F=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} \cdot q_{2}}{r^{2}}
$$

$$
\Phi_{E}=\mathbf{E} \cdot \mathbf{d} \mathbf{A}
$$

Force on charge in electric field

$$
\mathbf{F}=\mathbf{q} \cdot \mathbf{E}
$$

Force on charge in electric field

$$
F=q \cdot v \cdot B
$$

Where v is perpendicular to B.

Electric potential energy

$$
W=q \cdot E \cdot d
$$

Voltage

$$
U=\frac{W}{q}
$$

Energy in condensator

$$
W=\frac{1}{2} \cdot Q \cdot U
$$

Instantaneous current

$$
I_{\text {medel }}=\frac{Q}{t}, i=\frac{d q}{d t}
$$

Ohms law

$$
U=R \cdot I
$$

Resistivity

$$
R=\rho \frac{L}{A}
$$

Temperature dependence

$$
R_{t}=R_{0}\left[1+\alpha\left(T-T_{0}\right)\right]
$$

Where R_{0} is the resistance at temperature T_{0}

Battery

$$
U=E-R_{i} \cdot I
$$

Electric average power

$$
P_{\text {medel }}=\frac{W}{t}=U \cdot I
$$

Series circuit

$$
U_{T O T}=U_{1}+U_{2}+\ldots
$$

Resistance in series circuit

$$
R_{T O T}=R_{1}+R_{2}+\ldots
$$

Parallel circuit

$$
I_{T O T}=I_{1}+I_{2}+\ldots
$$

Resistance in Parallel circuit

$$
\frac{1}{R_{T O T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots
$$

Kirchhoffs law 1

$$
I_{1}+I_{2}+I_{3}+\ldots=0
$$

Kirchhoffs law 2

$$
U_{1}-R_{1} I-R_{2} I-U_{2}=0
$$

Charge of condensator

$$
Q=C \cdot U
$$

Plate capacitor

$$
C=\frac{\epsilon_{r} \epsilon_{0} A}{d}
$$

Energy in Capacitor

$$
W=\frac{Q \cdot U}{2}
$$

Capacitance is series circuit

$$
\frac{1}{C_{T O T}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\ldots
$$

